top of page

Research

As an important application of functional biomaterials, neural probes have contributed substantially to studying the brain. Previous generations of neural probes have had structural and mechanical dissimilarities from their neuron targets that lead to neuronal loss, neuroinflammatory responses, and measurement instabilities.

We develop a bioinspired design for neural probes—neuron-like electronics (NeuE)—where the key building blocks mimic the subcellular structural features and mechanical properties of neurons. Full three-dimensional mapping of implanted NeuE–brain interfaces highlights the structural indistinguishability and intimate interpenetration of NeuE and neurons. Time-dependent histology and electrophysiology studies further reveal a structurally and functionally stable interface with the neuronal and glial networks shortly following implantation, thus opening opportunities for next-generation brain-machine interfaces. Finally, the NeuE subcellular structural features are shown to facilitate the migration of endogenous neural progenitor cells, thus holding promise as an electrically active platform for transplantation-free regenerative medicine.

Publications

  • X. Yang, E. McGlynn, R. Das, S.P. Paşca, B. Cui*, H. Heidari*. Nanotechnology enables novel modalities for neuromodulation. Adv. Mater. 33, 2103208 (2021).

  • T.L. Li, Y. Liu, C. Forro, X. Yang, L. Beker, Z. Bao, B. Cui*, S.P. Pașca*. Stretchable mesh microelectronics for the biointegration and stimulation of human neural organoids. Biomaterials 290, 121825 (2022).

 

  • O. Revah, F. Gore, K.W. Kelley, J. Andersen, N. Sakai, X. Chen, M.-Y. Li, F. Birey, X. Yang, N.L. Saw, S.W. Baker, N.D. Amin, S. Kulkarni, R. Mudipalli, B. Cui, S. Nishino, G.A. Grant, J. K. Knowles, M. Shamloo, J.R. Huguenard, K. Deisseroth, S.P. Pașca*. Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022).

  • Y. Fang*, X. Yang, Y. Lin, J. Shi, A. Prominski, C. Clayton, E. Ostroff, B. Tian*. Dissecting biological and synthetic soft–hard interfaces for tissue-like systems. Chem. Rev. 122, 52335276 (2021).

 

 

 

 

 

 

 

  • C.M. Lieber, N. Gao, W. Zhou, X. Jiang, T. Gao and X. Yang. Nanoscale wires with external layers for sensors and other applications. US Patent Application Number: 15/563,773. Filed: Apr 1, 2016. Publication Date: Mar 29, 2018.

Presentations

Materials Research Society Fall Meeting                                                                            Dec 2019
Oral: Bioinspired neuron-like electronics for minimally invasive brain probes.    

 

Harvard University ChemTalks                                                                                            May 2019
Oral: Bioinspired neuron-like electronics for minimally invasive brain probes.    

 

Center for Nanoscale Systems Open House                                                                      Oct 2018
Poster: Bioinspired neuron-like electronics for noninvasive brain probes.    

 

Gordon Research Conference on Neurobiology of Cognition                                          July 2018
Poster: Neuron-like electronics for interrogation of brain electrophysiology in the natural state.

Simmons Symposium                                                                                                           June 2018
Oral: Bioinspired neuron-like electronics.    

 

Center for Brain Science Retreat                                                                                         May 2018
Poster: Bioinspired neuron-like electronics.    

 

Society for Biomaterials Annual Meeting                                                                            Apr 2018
Poster: Three-dimensional mapping of neuron-like mesh electronics/brain interfaces.    

 

Simmons Symposium                                                                                                           June 2017
Poster: Three-dimensional mapping of mesh electronics/brain interface.    

bottom of page